import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run function_proposed_gcn.py
with open('fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
= try_1(fraudTrain, 0.2, 0.05, 8.028000e+04, 0.3)
df_results = try_1(fraudTrain, 0.2, 0.05, 8.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 7.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 6.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 5.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 4.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 3.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 2.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 1.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 0.528000e+04, 0.3, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.977356 | 0.708475 | 0.928889 | 0.803846 | 0.988890 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 80280.0 | 0.3 |
1 | GCN | None | 0.975025 | 0.682334 | 0.935556 | 0.789128 | 0.988872 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 85280.0 | 0.3 |
2 | GCN | None | 0.976690 | 0.699336 | 0.935556 | 0.800380 | 0.989083 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 75280.0 | 0.3 |
3 | GCN | None | 0.975136 | 0.685855 | 0.926667 | 0.788280 | 0.983061 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 65280.0 | 0.3 |
4 | GCN | None | 0.973138 | 0.685053 | 0.855556 | 0.760870 | 0.967401 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 55280.0 | 0.3 |
5 | GCN | None | 0.970363 | 0.652246 | 0.871111 | 0.745956 | 0.964500 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 45280.0 | 0.3 |
6 | GCN | None | 0.973249 | 0.693878 | 0.831111 | 0.756320 | 0.953423 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 35280.0 | 0.3 |
7 | GCN | None | 0.972472 | 0.696498 | 0.795556 | 0.742739 | 0.947835 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 25280.0 | 0.3 |
8 | GCN | None | 0.970363 | 0.661376 | 0.833333 | 0.737463 | 0.942470 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 15280.0 | 0.3 |
9 | GCN | None | 0.971029 | 0.681382 | 0.788889 | 0.731205 | 0.920218 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 5280.0 | 0.3 |
= try_1(fraudTrain, 0.2, 0.05, 8.028000e+04, 0.2)
df_results = try_1(fraudTrain, 0.2, 0.05, 8.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 7.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 6.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 5.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 4.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 3.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 2.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 1.528000e+04, 0.2, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 0.528000e+04, 0.2, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.974803 | 0.679549 | 0.937778 | 0.788049 | 0.990093 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 80280.0 | 0.2 |
1 | GCN | None | 0.974692 | 0.678457 | 0.937778 | 0.787313 | 0.990258 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 85280.0 | 0.2 |
2 | GCN | None | 0.977134 | 0.706780 | 0.926667 | 0.801923 | 0.990247 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 75280.0 | 0.2 |
3 | GCN | None | 0.977911 | 0.720562 | 0.911111 | 0.804711 | 0.989463 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 65280.0 | 0.2 |
4 | GCN | None | 0.977356 | 0.709898 | 0.924444 | 0.803089 | 0.989131 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 55280.0 | 0.2 |
5 | GCN | None | 0.973360 | 0.683566 | 0.868889 | 0.765166 | 0.974388 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 45280.0 | 0.2 |
6 | GCN | None | 0.973249 | 0.688969 | 0.846667 | 0.759721 | 0.965068 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 35280.0 | 0.2 |
7 | GCN | None | 0.972139 | 0.681901 | 0.828889 | 0.748245 | 0.952331 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 25280.0 | 0.2 |
8 | GCN | None | 0.972694 | 0.697674 | 0.800000 | 0.745342 | 0.945920 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 15280.0 | 0.2 |
9 | GCN | None | 0.971917 | 0.685499 | 0.808889 | 0.742100 | 0.927742 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 5280.0 | 0.2 |
= try_1(fraudTrain, 0.2, 0.05, 9.028000e+04, 0.3)
df_results = try_1(fraudTrain, 0.2, 0.05, 10.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 11.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 12.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 13.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 14.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 15.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 16.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 17.528000e+04, 0.3, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 18.528000e+04, 0.3, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.976912 | 0.703020 | 0.931111 | 0.801147 | 0.989170 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 90280.0 | 0.3 |
1 | GCN | None | 0.975913 | 0.691928 | 0.933333 | 0.794702 | 0.989941 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 105280.0 | 0.3 |
2 | GCN | None | 0.977245 | 0.704508 | 0.937778 | 0.804576 | 0.990374 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 115280.0 | 0.3 |
3 | GCN | None | 0.975580 | 0.686084 | 0.942222 | 0.794007 | 0.989777 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 125280.0 | 0.3 |
4 | GCN | None | 0.976912 | 0.696429 | 0.953333 | 0.804878 | 0.990892 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 135280.0 | 0.3 |
5 | GCN | None | 0.977689 | 0.709949 | 0.935556 | 0.807287 | 0.990954 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 145280.0 | 0.3 |
6 | GCN | None | 0.977356 | 0.699029 | 0.960000 | 0.808989 | 0.990922 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 155280.0 | 0.3 |
7 | GCN | None | 0.976912 | 0.699670 | 0.942222 | 0.803030 | 0.990838 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 165280.0 | 0.3 |
8 | GCN | None | 0.974803 | 0.673406 | 0.962222 | 0.792315 | 0.990807 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 175280.0 | 0.3 |
9 | GCN | None | 0.976579 | 0.693679 | 0.951111 | 0.802249 | 0.990702 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 185280.0 | 0.3 |
= try_1(fraudTrain, 0.2, 0.05, 8.028000e+04, 0.4)
df_results = try_1(fraudTrain, 0.2, 0.05, 8.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 7.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 6.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 5.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 4.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 3.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 2.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 1.528000e+04, 0.4, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 0.528000e+04, 0.4, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.974137 | 0.690685 | 0.873333 | 0.771344 | 0.976023 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 80280.0 | 0.4 |
1 | GCN | None | 0.976024 | 0.700342 | 0.908889 | 0.791103 | 0.983160 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 85280.0 | 0.4 |
2 | GCN | None | 0.973027 | 0.681261 | 0.864444 | 0.761998 | 0.970200 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 75280.0 | 0.4 |
3 | GCN | None | 0.970696 | 0.658163 | 0.860000 | 0.745665 | 0.965231 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 65280.0 | 0.4 |
4 | GCN | None | 0.973360 | 0.693015 | 0.837778 | 0.758551 | 0.962320 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 55280.0 | 0.4 |
5 | GCN | None | 0.971362 | 0.669014 | 0.844444 | 0.746562 | 0.952634 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 45280.0 | 0.4 |
6 | GCN | None | 0.972028 | 0.684015 | 0.817778 | 0.744939 | 0.950328 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 35280.0 | 0.4 |
7 | GCN | None | 0.972694 | 0.688192 | 0.828889 | 0.752016 | 0.945925 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 25280.0 | 0.4 |
8 | GCN | None | 0.971140 | 0.674632 | 0.815556 | 0.738431 | 0.939967 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 15280.0 | 0.4 |
9 | GCN | None | 0.970141 | 0.681363 | 0.755556 | 0.716544 | 0.913493 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 5280.0 | 0.4 |
= try_1(fraudTrain, 0.2, 0.05, 8.028000e+04, 0.5)
df_results = try_1(fraudTrain, 0.2, 0.05, 10.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 11.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 12.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 13.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 8.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 7.528000e+04, 0.5, prev_results=df_results)
df_results = try_1(fraudTrain, 0.2, 0.05, 6.528000e+04, 0.5, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.973582 | 0.692727 | 0.846667 | 0.762000 | 0.964986 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 80280.0 | 0.5 |
1 | GCN | None | 0.972583 | 0.670017 | 0.888889 | 0.764088 | 0.974615 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 105280.0 | 0.5 |
2 | GCN | None | 0.977023 | 0.711304 | 0.908889 | 0.798049 | 0.985072 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 115280.0 | 0.5 |
3 | GCN | None | 0.977467 | 0.710392 | 0.926667 | 0.804243 | 0.988520 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 125280.0 | 0.5 |
4 | GCN | None | 0.971251 | 0.644917 | 0.944444 | 0.766456 | 0.988576 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 135280.0 | 0.5 |
5 | GCN | None | 0.971362 | 0.662712 | 0.868889 | 0.751923 | 0.965088 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 85280.0 | 0.5 |
6 | GCN | None | 0.972139 | 0.676732 | 0.846667 | 0.752221 | 0.963037 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 75280.0 | 0.5 |
7 | GCN | None | 0.972472 | 0.683636 | 0.835556 | 0.752000 | 0.957532 | True | Proposed | 0.2 | 21021 | amt | 0.264307 | 9009 | 0.05 | None | 65280.0 | 0.5 |